Package: ciccr (via r-universe)

September 15, 2024

Type Package

Title Causal Inference in Case-Control and Case-Population Studies

Version 0.3.0

Description Estimation and inference methods for causal relative and attributable risk in case-control and case-population studies under the monotone treatment response and monotone treatment selection assumptions. For more details, see the paper by Jun and Lee (2023), ``Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," <arXiv:2004.08318 [econ.EM]>, accepted for publication in Journal of Business & Economic Statistics.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports stats, glmnet

Suggests knitr, rmarkdown, testthat, MASS, splines, Matrix

VignetteBuilder knitr

Depends R (>= 2.10)

URL https://github.com/sokbae/ciccr/

BugReports https://github.com/sokbae/ciccr/issues

Repository https://sokbae.r-universe.dev

RemoteUrl https://github.com/sokbae/ciccr

RemoteRef HEAD

RemoteSha 6941495efe2edd9c7009cb36aff5ac99a4e04328

Contents

AAA_DML	2
ACS	3
ACS_CC	4
ACS_CP	4
avg_AR_logit	5
avg_RR_logit	6
cicc_AR	7
cicc_plot	9
cicc_RR	10
DZ_CC	11
FG	12
FG_CC	13
FG_CP	14
trim_pr	15
	16

Index

AAA_DML

Average Adjusted Association

Description

Averages the log odds ratio using prospective or retrospective high-dimensional logistic regression

Usage

 $AAA_DML(y, t, x, type = "pro", k = 10)$

Arguments

У	n-dimensional vector of binary outcomes
t	n-dimensional vector of binary treatments
х	n by d matrix of covariates
type	'pro' if the average is based on prospective regression; 'retro' if it is based on prospective regression (default = 'pro')
k	number of folds in k-fold partition (default = 10)

Value

An S3 object of type "ciccr". The object has the following elements.

est	a scalar estimate
se	standard error

ACS

References

Jun, S.J. and Lee, S. (2020). Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions. https://arxiv.org/abs/2004.08318.

Examples

```
# use the ACS dataset included in the package
y = ciccr::ACS$topincome
t = ciccr::ACS$baplus
age = ciccr::ACS$age
x = splines::bs(age, df=6) # b-splines for age
results = AAA_DML(y, t, x, 'pro', k=2)
```

ACS

ACS

Description

Sample extracted from American Community Survey (ACS) 2018, restricted to white males residing in California with at least a bachelor's degree. The sample is composed of 17,816 individuals whose age is restricted to be between 25 and 70.

Usage

ACS

Format

A data frame with 17,816 rows and 4 variables:

age age, in years

ind industry code, in four digits

baplus 1 if a respondent has a master's degree, a professional degree, or a doctoral degree; 0 otherwise

topincome 1 if income is top-coded; 0 otherwise

Source

https://usa.ipums.org/usa/

ACS_CC

Description

A case-control sample extracted from American Community Survey (ACS) 2018, restricted to white males residing in California with at least a bachelor's degree. The original ACS dataset is not from case-control sampling, but this case-control sample is obtained by the following procedure. The case sample is composed of 921 individuals whose income is top-coded. The control sample of equal size is randomly drawn without replacement from the pool of individuals whose income is not top-coded. Age is restricted to be between 25 and 70.

Usage

ACS_CC

Format

A data frame with 1842 rows and 4 variables:

age age, in years

ind industry code, in four digits

baplus 1 if a respondent has a master's degree, a professional degree, or a doctoral degree; 0 otherwise

topincome 1 if income is top-coded; 0 otherwise

Source

https://usa.ipums.org/usa/

ACS_CP

ACS_CP

Description

A case-population sample extracted from American Community Survey (ACS) 2018, restricted to white males residing in California with at least a bachelor's degree. The original ACS dataset is not from case-population sampling, but this case-population sample is obtained by the following procedure. The case sample is composed of 921 individuals whose income is top-coded. The control sample of equal size is randomly drawn without replacement from all observations and its top-coded status is coded missing. Age is restricted to be between 25 and 70.

Usage

ACS_CP

Format

A data frame with 1842 rows and 4 variables:

age age, in years

ind industry code, in four digits

baplus 1 if a respondent has a master's degree, a professional degree, or a doctoral degree; 0 otherwise

topincome 1 if an observation belongs to the case sample; NA otherwise

Source

https://usa.ipums.org/usa/

avg_AR_logit An Average of the Upper Bound on Causal Attributable Risk

Description

Averages the upper bound on causal attributable risk using prospective and retrospective logistic regression models under the monotone treatment response (MTR) and monotone treatment selection (MTS) assumptions.

Usage

```
avg_AR_logit(
   y,
   t,
   x,
   sampling = "cc",
   p_upper = 1L,
   length = 21L,
   interaction = TRUE,
   eps = 1e-08
)
```

Arguments

У	n-dimensional vector of binary outcomes
t	n-dimensional vector of binary treatments
x	n by d matrix of covariates
sampling	'cc' for case-control sampling; 'cp' for case-population sampling; 'rs' for ran- dom sampling (default = 'cc')
p_upper	specified upper bound for the unknown true case probability (default = 1)
length	specified length of a sequence from 0 to p_upper (default = 21)

interaction	TRUE if there are interaction terms in the retrospective logistic model; FALSE if not (default = TRUE)
eps	a small constant that determines the trimming of the estimated probabilities. Specifically, the estimate probability is trimmed to be between eps and 1-eps (default = 1e-8).

Value

An S3 object of type "ciccr". The object has the following elements.	
est	(length)-dimensional vector of the average of the upper bound of causal at- tributable risk
pseq	(length)-dimensional vector of a grid from 0 to p_upper

References

Jun, S.J. and Lee, S. (2023). Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions. https://arxiv.org/abs/2004.08318.

Manski, C.F. (1997). Monotone Treatment Response. Econometrica, 65(6), 1311-1334.

Manski, C.F. and Pepper, J.V. (2000). Monotone Instrumental Variables: With an Application to the Returns to Schooling. Econometrica, 68(4), 997-1010.

Examples

```
# use the ACS_CC dataset included in the package.
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
results = avg_AR_logit(y, t, x, sampling = 'cc')
```

avg_RR_logit An Average of the Log Odds Ratio

Description

Averages the log odds ratio using retrospective logistic regression.

Usage

avg_RR_logit(y, t, x, w = "control")

$cicc_AR$

Arguments

У	n-dimensional vector of binary outcomes
t	n-dimensional vector of binary treatments
x	n by d matrix of covariates
W	'case' if the average is conditional on the case sample; 'control' if it is condi- tional on the control sample; 'all' if it is based on the whole sample; default w = 'control'

Value

An S3 object of type "ciccr". The object has the following elements.

est	a scalar estimate of the weighted average of the log odds ratio using retrospective logistic regression
se	standard error

References

Jun, S.J. and Lee, S. (2023). Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions. https://arxiv.org/abs/2004.08318.

Examples

use the ACS_CC dataset included in the package

y = ciccr::ACS_CC\$topincome

t = ciccr::ACS_CC\$baplus

x = ciccr::ACS_CC\$age

- # use 'case' to condition on the distribution of covariates given y = 1
 results = avg_RR_logit(y, t, x, 'case')
- cicc_AR

Causal Inference on Attributable Risk

Description

Provides an upper bound on the average of attributable risk under the monotone treatment response (MTR) and monotone treatment selection (MTS) assumptions.

Usage

```
cicc_AR(
   y,
   t,
   x,
   sampling = "cc",
   p_upper = 1L,
```

```
cov_prob = 0.95,
length = 21L,
interaction = TRUE,
no_boot = 0L,
eps = 1e-08
)
```

Arguments

У	n-dimensional vector of binary outcomes
t	n-dimensional vector of binary treatments
x	n by d matrix of covariates
sampling	'cc' for case-control sampling; 'cp' for case-population sampling; 'rs' for ran- dom sampling (default = 'cc')
p_upper	a specified upper bound for the unknown true case probability (default = 1)
cov_prob	coverage probability of a confidence interval (default = 0.95)
length	specified length of a sequence from 0 to p_upper (default = 21)
interaction	TRUE if there are interaction terms in the retrospective logistic model; FALSE if not (default = TRUE)
no_boot	number of bootstrap repetitions to compute the confidence intervals (default = 0)
eps	a small constant that determines the trimming of the estimated probabilities. Specifically, the estimate probability is trimmed to be between eps and 1-eps (default = $1e-8$).

Value

An S3 object of type "ciccr". The object has the following elements:

est	(length)-dimensional vector of the upper bounds on the average of attributable risk
ci	(length)-dimensional vector of the upper ends of pointwise one-sided confidence intervals
pseq	(length)-dimensional vector of a grid from 0 to p_upper
cov_prob	the nominal coverage probability
return_code	status of existence of missing values in bootstrap replications

References

Jun, S.J. and Lee, S. (2020). Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions. https://arxiv.org/abs/2004.08318.

Manski, C.F. (1997). Monotone Treatment Response. Econometrica, 65(6), 1311-1334.

Manski, C.F. and Pepper, J.V. (2000). Monotone Instrumental Variables: With an Application to the Returns to Schooling. Econometrica, 68(4), 997-1010.

8

cicc_plot

Examples

```
# use the ACS_CC dataset included in the package.
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
results_AR = cicc_AR(y, t, x, sampling = 'cc', no_boot = 100)
```

cicc_plot

Plotting Upper Bounds on Relative and Attributable Risk

Description

Plots upper bounds on relative and attributable risk

Usage

```
cicc_plot(
  results,
  parameter = "RR",
  sampling = "cc",
  save_plots = FALSE,
  file_name = Sys.Date(),
  plots_ctl = 0.3
)
```

Arguments

results	estimation results from either cicc_RR or cicc_AR
parameter	'RR' for relative risk; 'AR' for attributable risk (default = 'RR')
sampling	'cc' for case-control sampling; 'cp' for case-population sampling (default = 'cc')
save_plots	TRUE if the plots are saved as pdf files; FALSE if not (default = FALSE)
file_name	the pdf file name to save the plots (default = Sys.Date())
plots_ctl	value to determine the topleft position of the legend in the figure a large value makes the legend far away from the confidence intervals (default = 0.3)

Value

A X-Y plot where the X axis shows the range of p from 0 to p_upper and the Y axis depicts both point estimates and the upper end point of the one-sided confidence intervals.

References

Jun, S.J. and Lee, S. (2020). Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions. https://arxiv.org/abs/2004.08318.

Examples

```
# use the ACS_CC dataset included in the package.
y = ciccr::ACS_CC$topincome
t = ciccr::ACS_CC$baplus
x = ciccr::ACS_CC$age
results = cicc_RR(y, t, x)
cicc_plot(results)
```

cicc_RR

Causal Inference on Relative Risk

Description

Provides upper bounds on the average of log relative risk under the monotone treatment response (MTR) and monotone treatment selection (MTS) assumptions.

Usage

cicc_RR(y, t, x, sampling = "cc", cov_prob = 0.95)

Arguments

У	n-dimensional vector of binary outcomes
t	n-dimensional vector of binary treatments
х	n by d matrix of covariates
sampling	'cc' for case-control sampling; 'cp' for case-population sampling; 'rs' for ran- dom sampling (default = 'cc')
cov_prob	coverage probability of a uniform confidence band (default = 0.95)

Value

An S3 object of type "ciccr". The object has the following elements:

est	estimates of the upper bounds on the average of log relative risk at p=0 and p=1
se	pointwise standard errors at p=0 and p=1
ci	the upper end points of the uniform confidence band at p=0 and p=1
pseq	two end points: p=0 and p=1

References

Jun, S.J. and Lee, S. (2023). Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions. https://arxiv.org/abs/2004.08318.

Manski, C.F. (1997). Monotone Treatment Response. Econometrica, 65(6), 1311-1334.

Manski, C.F. and Pepper, J.V. (2000). Monotone Instrumental Variables: With an Application to the Returns to Schooling. Econometrica, 68(4), 997-1010.

10

DZ_CC

Examples

use the ACS_CC dataset included in the package. y = ciccr::ACS_CC\$topincome t = ciccr::ACS_CC\$baplus x = ciccr::ACS_CC\$age results_RR = cicc_RR(y, t, x, sampling = 'cc', cov_prob = 0.95)

DZ_CC

DZ_CC

Description

Case-control sample extracted from Delavande and Zafar (2019). The sample is composed of 689 students who attended either "Very Selective University" (VSU) or "Selective University" (SU).

Usage

DZ_CC

Format

A data frame with 689 rows and 5 variables:

parent_ba indicator: at least one college-educated parent

private_school indicator: attended private school before unversity

parent_inc parents' monthly income (in 1000s Rs)

case_sample indicator: attended "Very Selective University" (VSU)

control_sample indicator: attended the other simply "Selective University" (SU)

Source

https://www.journals.uchicago.edu/doi/suppl/10.1086/701808/suppl_file/2014399data. zip

References

Delavande, A. and Zafar, B. (2019). University Choice: The Role of Expected Earnings, Non-Pecuniary Outcomes, and Financial Constraints. Journal of Political Economy 127(5), 2343-2393.

FG

Description

FG

Dataset from Fang and Gong (2017,2020). The original dataset in Fang and Gong (2017) is updated in Fang and Gong (2020) after Matsumoto (2020) pointed out data and coding errors in the original work. We use the updated version of the dataset. The sample is composed of 78,165 physicians who billed at least 20 hours per week.

Usage

FG

Format

A data frame with 78,165 rows and 5 variables:

male indicator: physician is male

isMD indicator: physician has a MD degree

experYear experience in years

flag indicator: physician billed for more than 100 hours per week

smallPractice indicator: number of group practice members less than 6

Source

Fang, H. and Gong, Q. (2020) Data and Code for: Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Reply. Nashville, TN: American Economic Association [pub-lisher]. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2020-11-23. doi:10.3886/E119192V1

References

Fang, H. and Gong, Q. (2017). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked. American Economic Review, 107(2), 562-91.

Matsumoto, B. (2020). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Comment. American Economic Review, 110(12), 3991-4003.

Fang, H. and Gong, Q. (2020). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Reply. American Economic Review, 110(12): 4004-10.

FG_CC

FG_CC

Description

Case-control sample extracted from Fang and Gong (2020). The case-control sample is extracted from Fang and Gong (2020) by the following procedure. The case sample is composed of 2,261 flagged physicians (that is, those who billed for more than 100 hours per week). The control sample of equal size is randomly drawn without replacement from the pool of physicians who were never flagged. The sample is composed of 4,522 physicians who billed at least 20 hours per week.

Usage

FG_CC

Format

A data frame with 4,522 rows and 5 variables:

male indicator: physician is male

isMD indicator: physician has a MD degree

experYear experience in years

flag indicator: physician billed for more than 100 hours per week

smallPractice indicator: number of group practice members less than 6

Source

Fang, H. and Gong, Q. (2020) Data and Code for: Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Reply. Nashville, TN: American Economic Association [pub-lisher]. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2020-11-23. doi:10.3886/E119192V1

References

Fang, H. and Gong, Q. (2017). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked. American Economic Review, 107(2), 562-91.

Matsumoto, B. (2020). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Comment. American Economic Review, 110(12), 3991-4003.

Fang, H. and Gong, Q. (2020). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Reply. American Economic Review, 110(12), 4004-10.

FG_CP

Description

Case-population sample extracted from Fang and Gong (2020). The case-population sample is extracted from Fang and Gong (2020) by the following procedure. The case sample is composed of 2,261 flagged physicians (that is, those who billed for more than 100 hours per week). The control sample of equal size is randomly drawn without replacement from all observations and its flagged status is coded missing. The sample is composed of 4,522 physicians who billed at least 20 hours per week.

Usage

FG_CP

Format

A data frame with 4,522 rows and 5 variables:

male indicator: physician is male

isMD indicator: physician has a MD degree

experYear experience in years

flag 1 if an observation belongs to the case sample; NA otherwise

smallPractice indicator: number of group practice members less than 6

Source

Fang, H. and Gong, Q. (2020) Data and Code for: Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Reply. Nashville, TN: American Economic Association [pub-lisher]. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2020-11-23. doi:10.3886/E119192V1

References

Fang, H. and Gong, Q. (2017). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked. American Economic Review, 107(2), 562-91.

Matsumoto, B. (2020). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Comment. American Economic Review, 110(12), 3991-4003.

Fang, H. and Gong, Q. (2020). Detecting Potential Overbilling in Medicare Reimbursement via Hours Worked: Reply. American Economic Review, 110(12): 4004-10.

trim_pr

Description

Trimming the estimates to be strictly between 0 and 1

Usage

trim_pr(ps, eps = 1e-08)

Arguments

ps	n-dimensional vector of estimated probabilities
eps	a small constant that determines the trimming of the estimated probabilities. Specifically, the estimate probability is trimmed to be between eps and 1-eps (default = 1e-8).

Value

ps_tr n-dimensional trimmed estimates

Index

* datasets ACS, 3 $ACS_CC, 4$ $ACS_CP, 4$ DZ_CC, 11 FG, 12 FG_CC, 13 FG_CP, 14 AAA_DML, 2 ACS, **3** $ACS_CC, 4$ ACS_CP, 4 $avg_AR_logit, 5$ $avg_RR_logit, 6$ cicc_AR,7 cicc_plot, 9 $cicc_{RR}, 10$ DZ_CC, 11 FG, 12 FG_CC, 13 FG_CP, 14

 $\texttt{trim_pr, 15}$