Package: ciccr 0.3.0
ciccr: Causal Inference in Case-Control and Case-Population Studies
Estimation and inference methods for causal relative and attributable risk in case-control and case-population studies under the monotone treatment response and monotone treatment selection assumptions. For more details, see the paper by Jun and Lee (2023), "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," <arXiv:2004.08318 [econ.EM]>, accepted for publication in Journal of Business & Economic Statistics.
Authors:
ciccr_0.3.0.tar.gz
ciccr_0.3.0.zip(r-4.5)ciccr_0.3.0.zip(r-4.4)ciccr_0.3.0.zip(r-4.3)
ciccr_0.3.0.tgz(r-4.4-any)ciccr_0.3.0.tgz(r-4.3-any)
ciccr_0.3.0.tar.gz(r-4.5-noble)ciccr_0.3.0.tar.gz(r-4.4-noble)
ciccr_0.3.0.tgz(r-4.4-emscripten)ciccr_0.3.0.tgz(r-4.3-emscripten)
ciccr.pdf |ciccr.html✨
ciccr/json (API)
NEWS
# Install 'ciccr' in R: |
install.packages('ciccr', repos = c('https://sokbae.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/sokbae/ciccr/issues
case-control-studiescausal-inferencepartial-identificationtreatment-effects
Last updated 1 years agofrom:6941495efe. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-win | OK | Nov 14 2024 |
R-4.5-linux | OK | Nov 14 2024 |
R-4.4-win | OK | Nov 14 2024 |
R-4.4-mac | OK | Nov 14 2024 |
R-4.3-win | OK | Nov 14 2024 |
R-4.3-mac | OK | Nov 14 2024 |
Exports:AAA_DMLavg_AR_logitavg_RR_logitcicc_ARcicc_plotcicc_RRtrim_pr
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Average Adjusted Association | AAA_DML |
ACS | ACS |
ACS_CC | ACS_CC |
ACS_CP | ACS_CP |
An Average of the Upper Bound on Causal Attributable Risk | avg_AR_logit |
An Average of the Log Odds Ratio | avg_RR_logit |
Causal Inference on Attributable Risk | cicc_AR |
Plotting Upper Bounds on Relative and Attributable Risk | cicc_plot |
Causal Inference on Relative Risk | cicc_RR |
DZ_CC | DZ_CC |
FG | FG |
FG_CC | FG_CC |
FG_CP | FG_CP |
Trimming the estimates to be strictly between 0 and 1 | trim_pr |