Package: ciccr 0.3.0

ciccr: Causal Inference in Case-Control and Case-Population Studies

Estimation and inference methods for causal relative and attributable risk in case-control and case-population studies under the monotone treatment response and monotone treatment selection assumptions. For more details, see the paper by Jun and Lee (2023), "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," <arXiv:2004.08318 [econ.EM]>, accepted for publication in Journal of Business & Economic Statistics.

Authors:Sung Jae Jun [aut], Sokbae Lee [aut, cre]

ciccr_0.3.0.tar.gz
ciccr_0.3.0.zip(r-4.5)ciccr_0.3.0.zip(r-4.4)ciccr_0.3.0.zip(r-4.3)
ciccr_0.3.0.tgz(r-4.4-any)ciccr_0.3.0.tgz(r-4.3-any)
ciccr_0.3.0.tar.gz(r-4.5-noble)ciccr_0.3.0.tar.gz(r-4.4-noble)
ciccr_0.3.0.tgz(r-4.4-emscripten)ciccr_0.3.0.tgz(r-4.3-emscripten)
ciccr.pdf |ciccr.html
ciccr/json (API)
NEWS

# Install 'ciccr' in R:
install.packages('ciccr', repos = c('https://sokbae.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sokbae/ciccr/issues

Datasets:

On CRAN:

case-control-studiescausal-inferencepartial-identificationtreatment-effects

4.00 score 2 stars 4 scripts 203 downloads 7 exports 10 dependencies

Last updated 1 years agofrom:6941495efe. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-winOKNov 14 2024
R-4.5-linuxOKNov 14 2024
R-4.4-winOKNov 14 2024
R-4.4-macOKNov 14 2024
R-4.3-winOKNov 14 2024
R-4.3-macOKNov 14 2024

Exports:AAA_DMLavg_AR_logitavg_RR_logitcicc_ARcicc_plotcicc_RRtrim_pr

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvival

Causal Inference in Case-Control and Case-Population Studies: Vignette

Rendered fromciccr-vignette.Rmdusingknitr::rmarkdownon Nov 14 2024.

Last update: 2023-10-20
Started: 2020-08-02